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Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than . The train-
ing procedure for GG is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions GG and D, a unique solution exists, with GG recovering the training data
distribution and D equal to % everywhere. In the case where GG and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.
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D and G play the following two-player minimax game
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, 1s a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(!), ..., 2(")} from noise prior p,(2).
o L o it 2,20 g\=)-
D—l ]Il'El'Dl E-lO“ I:H0|_|' % |§7 | e Sample minibatch of m examples {x‘Y),... 2™} from data generating distribution
pdata(m)*

e Update the discriminator by ascending its stochastic gradient:

T

ngi Z {logD (m[i)) + log (1 — D (G (z“]))ﬂ :

end for
e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:
1 « ,
o|L| x| 27]. Vo, — Y log (1-9(@ (z(”))).
of 9| H|O| B0 ArEE|= OB ME2| & =
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Lp = —[log D(z) + log(1 — D(G(2)))]

Discriminator Loss

—— D_loss_real (True data)
—— D loss_fake (Fake data)

L¢

—log D(G(2))

Generator Loss

Di(x)

—— G_loss (Fake data)
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CIFAR 10
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https://github.com/eriklindernoren/PyTorch—GAN
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Installation

$ git clone https://github.com/eriklindernoren/PyTorch-GAN
$ cd PyTorch-GAN/
$ sudo pip3 install -r requirements.txt

Run Example

$ cd implementations/gan/
$ python3 gan.py
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Image Generation on CIFAR-10

Leaderboard Dataset
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